Tag Archives: security selection

Liquidation of Crowded Hedge Fund Energy Positions

The 2014-2015 energy carnage has been worse for crowded hedge fund energy positions than the global financial crisis. Past liquidations of crowded hedge fund bets were followed by rapid recoveries. Consequently, energy investors should survey the wreckage for opportunities.

Crowded hedge fund oil and gas producers underperformed their sector peers by over 20% since 2013 as fund energy books were liquidated. Crowded oilfield service bets underperformed by over 15%. This is worse than 10-15% underperformance during the 2008-2009 global financial crisis.

Forced hedge fund portfolio liquidations are usually followed by rapid recoveries in the affected names – liquidations during the global financial crisis reversed in under a year. Since the energy market in 2015 faces unique challenges, history may not repeat itself. Still, some of the crowded positions should present opportunities.

Performance of Crowded Hedge Fund Oil and Gas Producer Bets

To explore crowding we analyze hedge fund Oil and Gas Producer Sector holdings (HF Sector Aggregate) relative to the Sector Market Portfolio (Sector Aggregate). HF Sector Aggregate is position-weighted; Sector Aggregate is capitalization-weighted. This follows the approach of our earlier articles on hedge fund crowding.

The figure below plots historical return of HF Oil and Gas Producer Aggregate. Factor return is due to systematic (market) risk. Blue area represents positive and gray area represents negative risk-adjusted returns from security selection (αReturn). Crowded bets underperformed the portfolio with the same systematic risk (factor portfolio) by over 50% during the past 10 years, largely since 2014:

Chart of the passive and security selection performance of the aggregate portfolio of Hedge Fund Oil and Gas Producer Sector holdings

Hedge Fund Oil and Gas Producer Sector Aggregate Historical Performance

The risk-adjusted return from security selection (αReturn) of HF Sector Aggregate is the return it would have generated if markets had been flat – all market effects on performance have been eliminated. This is the idiosyncratic performance of HF Sector Aggregate:

Chart of the security selection performance of the aggregate portfolio of Hedge Fund Oil and Gas Producer Sector holdings

Hedge Fund Oil and Gas Producer Sector Aggregate Historical Security Selection Performance

The above chart reveals that by Q2 2009 the crowded hedge fund energy producers erased underperformance due to 2008 liquidation. The liquidation since 2013 has been even larger than in 2008. Since they may be posed for a steep recovery, crowded hedge fund oil and gas producer bets are worth watching in the coming months.

Performance of Crowded Hedge Fund Oilfield Service Bets

The figure below plots historical return of HF Oilfield Service Aggregate. It follows the approach of HF Oil and Gas Producer Aggregate above:

Chart of the passive and security selection performance of the aggregate portfolio of Hedge Fund Oilfield Service Sector holdings

Hedge Fund Oilfield Service Sector Aggregate Historical Performance

Since 2013, the crowded oilfield service portfolio has underperformed, similarly to the crowded oil and gas portfolio:

Chart of the security selection performance of the aggregate portfolio of Hedge Fund Oilfield Service Sector holdings

Hedge Fund Oilfield Service Sector Aggregate Historical Security Selection Performance

Crowded energy producers and service companies have underperformed sector peers by 15-25% in the latest liquidation. Many may now be attractive, given the recovery that typically follows. Below are the hedge fund energy bets that may present these opportunities:

Crowded Hedge Fund Oil and Gas Producer Bets

The following stocks contributed most to the relative residual (idiosyncratic, security-specific) risk of the HF Oil and Gas Aggregate as of Q1 2015. Blue bars represent long (overweight) exposures relative to Sector Aggregate. White bars represent short (underweight) exposures. Bar height represents contribution to relative stock-specific risk:

Chart of the contribution to relative risk of the most crowded hedge fund oil and gas production bets

Crowded Hedge Fund Oil and Gas Producer Bets

The following table contains detailed data on these crowded hedge fund oil and gas producer bets:

Exposure (%)

Net Exposure

Share of Risk (%)
HF Sector Aggr. Sector Aggr. % $mil Days of Trading
WPZ Williams Partners, L.P. 17.93 4.75 13.18 1,812.2 15.0 23.04
PXD Pioneer Natural Resources Company 14.42 4.01 10.41 1,432.0 4.9 17.91
CRC California Resources Corp 3.42 0.48 2.93 403.2 8.2 10.79
CHK Chesapeake Energy Corporation 8.31 1.55 6.76 930.1 2.8 9.95
COP ConocoPhillips 0.99 12.62 -11.63 -1,599.0 -3.7 7.00
OXY Occidental Petroleum Corporation 0.69 9.25 -8.56 -1,176.6 -3.3 5.45
EOG EOG Resources, Inc. 2.13 8.28 -6.14 -844.7 -2.4 4.40
RRC Range Resources Corporation 5.33 1.45 3.88 533.8 3.4 3.68
CIE Cobalt International Energy, Inc. 3.10 0.64 2.46 338.2 11.2 2.93
OAS Oasis Petroleum Inc. 3.15 0.33 2.82 387.9 2.7 2.39
CMLP Crestwood Midstream Partners LP 3.83 0.45 3.38 465.2 47.0 1.99
AR Antero Resources Corporation 3.97 1.60 2.37 325.5 4.5 1.39
WLL Whiting Petroleum Corporation 3.57 1.04 2.53 347.5 1.2 1.06
NBL Noble Energy, Inc. 0.28 3.12 -2.84 -390.1 -2.2 0.80
CLR Continental Resources, Inc. 0.18 2.68 -2.50 -344.1 -2.2 0.76
COG Cabot Oil \& Gas Corporation 0.49 2.01 -1.52 -209.5 -1.1 0.71
DVN Devon Energy Corporation 0.55 4.06 -3.51 -483.0 -2.2 0.62
EQT EQT Corporation 0.16 2.07 -1.91 -262.3 -2.5 0.59
APA Apache Corporation 1.15 3.74 -2.59 -356.6 -1.7 0.47
APC Anadarko Petroleum Corporation 4.99 7.02 -2.04 -280.2 -0.8 0.43
Other Positions 0.80 3.65
Total 100.00

Crowded Hedge Fund Oilfield Service Bets

The following stocks contributed most to the relative residual risk of the HF Sector Aggregate as of Q1 2015:

Chart of the contribution to relative risk of the most crowded hedge fund oilfield service bets

Crowded Hedge Fund Oilfield Service Bets

The following table contains detailed data on these crowded hedge fund oilfield service bets:

Exposure (%) Net Exposure Share of Risk (%)
HF Sector Aggr. Sector Aggr. % $mil Days of Trading
BHI Baker Hughes Incorporated 32.63 9.95 22.68 1,258.9 6.1 50.38
SLB Schlumberger NV 3.31 38.39 -35.07 -1,946.7 -2.8 22.65
HAL Halliburton Company 28.87 13.42 15.45 857.4 1.4 12.44
DAKP Dakota Plains Holdings, Inc. 0.31 0.04 0.27 15.1 78.3 3.86
HOS Hornbeck Offshore Services, Inc. 3.21 0.24 2.97 164.9 6.8 1.89
NOV National Oilwell Varco, Inc. 2.88 7.38 -4.49 -249.4 -0.9 1.45
FTI FMC Technologies, Inc. 0.02 3.08 -3.06 -169.9 -1.2 1.06
FTK Flotek Industries, Inc. 1.51 0.29 1.22 67.9 5.8 0.85
WFT Weatherford International plc 1.25 3.43 -2.18 -121.1 -1.0 0.71
CLB Core Laboratories NV 0.00 1.62 -1.62 -90.0 -1.1 0.57
SDRL Seadrill Ltd. 0.00 1.66 -1.66 -92.1 -0.6 0.49
OIS Oil States International, Inc. 2.71 0.74 1.97 109.5 2.7 0.39
EXH Exterran Holdings, Inc. 1.98 0.83 1.14 63.4 2.6 0.36
USAC USA Compression Partners LP 1.80 0.24 1.56 86.6 45.7 0.31
OII Oceaneering International, Inc. 0.13 1.93 -1.81 -100.3 -1.5 0.27
FI Frank’s International NV 0.00 1.04 -1.04 -57.7 -4.2 0.26
KNOP KNOT Offshore Partners LP 2.31 0.12 2.19 121.4 47.1 0.25
RES RPC, Inc. 0.05 1.00 -0.96 -53.0 -2.0 0.23
WG Willbros Group, Inc. 0.46 0.07 0.39 21.5 11.3 0.19
MDR McDermott International, Inc. 1.04 0.33 0.71 39.5 1.4 0.17
Other Positions 0.34 1.22
Total 100.00

Summary

  • The 2014-2015 carnage has been worse for crowded hedge fund oil and gas producer and oilfield service bets than the global financial crisis.
  • Past liquidations of crowded positions were followed by rapid recoveries.
  • Energy investors should survey the wreckage of crowded hedge fund energy bets for opportunities.
The information herein is not represented or warranted to be accurate, correct, complete or timely.
Past performance is no guarantee of future results.
Copyright © 2012-2015, AlphaBetaWorks, a division of Alpha Beta Analytics, LLC. All rights reserved.
Content may not be republished without express written consent.

 

Large Hedge Fund Survivor Bias

Why Size Isn’t Everything

Hedge fund survivor bias is especially insidious for the largest firms. Large hedge fund survivor bias overstates expected performance of the biggest firms by nearly half and their risk adjusted return from security selection (stock picking) by 80%. It is impossible to predict the largest funds of the future, but one doesn’t have to – robust skill analytics identify funds that will do even better in the future than tomorrow’s largest.

Past Performance of Today’s Largest Hedge Funds

We follow the approach of our earlier piece on hedge fund survivor (survivorship) bias, which analyzed firms’ long U.S. equity portfolios (HF Aggregate). This dataset spans the long portfolios of all hedge funds active over the past 10 years that are tractable using 13F filings.

We compare group returns to Factor Portfolio – a portfolio with matching factor (systematic) risk. Factor Portfolio captures the return of investing passively in ETFs and index futures with the same risk as the group. This comparison reveals security selection (stock picking) performance, or αReturn – outperformance relative to the Factor Portfolio and the return that would have been generated if markets had been flat.

The following chart compares the performance of the 20 largest U.S. equity hedge fund long portfolios (Large HFs, green) to the Factor Portfolio (black). The security selection performance, or αReturn (blue), is the difference between the two. This is the average past performance of the 20 largest funds of 2015:

Chart of the past total, factor, and residual returns of long U.S. equity portfolios of the 20 largest hedge funds of 2015

Current Largest Hedge Funds: Past Total, Factor, and Residual Long U.S. Equity Returns

Returns (%)

Annualized

10-year Cum.

Total

11.48

215.26

Factor

9.33

154.29

Total – Factor

2.15

60.97

Firms that have grown the largest over the past 10 years have performed exceptionally well: Including the effect of compounding, their long portfolios generated 61% higher return than their passive equivalents. If markets had been flat for the past 10 years, their long equity portfolios would have appreciated by nearly 25%.

The allure of this past performance arouses fund-following, guru-tracking, and billionaire portfolio strategies. But there is one problem: Today’s largest funds represent a top-performing sliver of the thousands of funds active in the past. Of the thousands of funds, some truly are skilled, but many simply got lucky on aggressive bets and became large as a result, irrespective of their skill. This constitutes large hedge fund survivor bias. This performance does not persist and tends to mean-revert.

Future Performance of Yesterday’s Largest Hedge Funds

Most billionaire and guru-following strategies make the assumption that the largest funds are likely to continue generating strong returns. To test this, we tracked the 20 largest long U.S. equity hedge fund portfolios of 2005. Below is the unappealing picture of their average performance:

Chart of the future total, factor, and residual returns of long U.S. equity portfolios of the 20 largest hedge funds of 2005

2005 Largest Hedge Funds: Future Total, Factor, and Residual Long U.S. Equity Returns

Returns (%)

Annualized

10-year Cum.

Total

7.70

116.05

Factor

8.68

138.11

Total – Factor

-0.97

-22.05

The 2005 Large HF Aggregate tracked Factor Portfolio closely until 2010 and has struggled since. Hence, including the effects of compounding, large hedge fund survivor bias overstated security selection returns by 80%.

Size does not always signal quality, nor does it guarantee future performance. Between 2005 and 2015, the forward-looking performance of the largest long hedge fund portfolios of 2005 was just over half the backward-looking performance of 2015’s largest. Why then would the largest hedge funds of 2015 perform differently than the poor showing of the 2005 vintage?

Predicting Top Future Hedge Funds: Stock Picking Skill

Absent a time machine, investors cannot know who will be the future stars. However, they need not despair. Instead of focusing on the largest or top-performing funds of the past, they can turn to those showing the highest evidence of skill. The following chart tracks the long U.S. equity portfolios of 20 hedge funds with the highest 3-year αReturn as of 12/31/2005:

Chart of the future total, factor, and residual returns of long U.S. equity portfolios of the 20 best stock picker hedge funds of 2005

Best 2005 Stock Picker Hedge Funds: Future Total, Factor, and Residual Long U.S. Equity Returns

Returns (%)

Annualized

10-year Cum.

Total

12.60

252.58

Factor

9.11

148.70

Total – Factor

3.49

103.88

The funds above were the best stock pickers of 2005, not the largest. If markets had been flat for the past 10 years, the top stock pickers of 2005 would have returned 40%. For a variety of reasons (scalability constraints, lifestyle preferences), many have not become the largest or best known, but their risk-adjusted returns are strong.

Since active management skills persist, skilled stock pickers of the past continue to generate strong nominal and risk-adjusted returns. The same analysis identifies today’s top stock pickers who will be tomorrow’s outperformers – and without the cost of a time machine!

Conclusions

  • Hedge fund survivor bias is larger for the largest hedge funds.
  • Between 2005 and 2015, large hedge fund survivor bias overstated expected nominal performance by nearly 100% and security selection performance by 80%.
  • Chasing large hedge funds is unnecessary and detrimental. Selecting a fund using robust skill analytics, as illustrated by αReturn, is superior to flawed results hampered by large hedge fund survivor bias.
The information herein is not represented or warranted to be accurate, correct, complete or timely.
Past performance is no guarantee of future results.
Copyright © 2012-2015, 
AlphaBetaWorks, a division of Alpha Beta Analytics, LLC. All rights reserved.
Content may not be republished without express written consent.

Hedge Fund Survivor Bias

And The Flaws of Blind Fund-Following Strategies

Numerous financial data and analytics vendors peddle hedge fund tracking strategies and content. Much of this data is hazardous to investors – Hedge fund survivor bias, a special case of the pervasive survivorship bias, is its key flaw. This artifact overstates nominal fund returns by a fifth and conceals mediocre risk-adjusted performance records.

This post is technical, but it illustrates an important phenomenon and sets up the foundation for upcoming articles. We analyze the long equity portfolios of approximately 1,000 medium and lower turnover non-quantitative hedge funds active over the past 10 years (HF Aggregate). This dataset spans the long portfolios of all non-quantitative hedge funds active over the past 10 years that are tractable using 13F filings.

HF Aggregate consists of two approximately equal sub-sets: HF Surviving Aggregate and HF Defunct Aggregate. HF Surviving Aggregate, similar to the datasets of many vendors, gives a deeply misleading picture of average hedge fund performance. Our HF Aggregate corrects this by including HF Defunct Aggregate – funds that stopped filing 13Fs as their U.S. assets dropped below $100 million.

All Hedge Fund Performance

We compare HF Aggregate to Factor Portfolio – a portfolio with matching factor (systematic) risk. Factor Portfolio captures the return investors would have realized if they had passively invested in ETFs and index futures with the same risk as HF Aggregate. We do this to calculate security selection (stock picking) returns of HF Aggregate.

With the exception of the 2009-2011 period, HF Aggregate generated negative returns from security selection. AlphaBetaWorks’ measure of security selection performance is αReturn – outperformance relative to the Factor Portfolio. αReturn is also the return HF Aggregate would have generated if markets were flat. Since 2011, HF Aggregate’s αReturn was -2%. If markets had been flat, the average medium-turnover long hedge fund portfolio would have lost 2% from its long portfolio. Including the effects of compounding with factor returns, αReturn was -3%.

Putting these elements together, the chart below compares HF Aggregate’s performance (green) to the Factor Portfolio (black). The security selection performance, or αReturn (blue), is the difference between the two. This is the true long performance of the average hedge fund:

Chart of the cumulative total, factor, and residual/security selection performance of all medium turnover hedge fund U.S. equity portfolios, free from hedge fund survivor bias

All Medium Turnover U.S. Hedge Fund Long Portfolios: Factor, Residual, and Total Returns

Performance (%)

Annualized

10-year
Total

8.48

133.57

Factor

8.60

136.39

Total – Factor

-0.12

-2.82

Survivor Hedge Fund Performance – Survivorship Bias in Action

The figures above contrast with those promoted by many data vendors and analytics providers. They typically consider (or provide data on) the survivors only – those funds that are still around, active, and reporting their holdings – HF Surviving Aggregate.

Indeed, the performance of surviving hedge funds is superior: their nominal return is 26% higher than HF Aggregate’s and their security selection performance is positive. Not surprisingly, surviving funds have consistently generated positive risk-adjusted returns from security selection, outperforming the replicating Factor Portfolio. This is the performance investors typically see:

Chart of the cumulative total, factor, and residual/security selection performance of surviving medium turnover hedge fund U.S. equity portfolios, affected by the hedge fund survivor bias

Surviving Medium Turnover U.S. Hedge Fund Long Portfolios: Factor, Residual, and Total Returns

Performance (%)

Annualized

10-year

Total

9.54

159.57

Factor

9.06

147.37

Total – Factor

0.48

12.20

Defunct Hedge Fund Performance

The disconnect between these two pictures of average hedge fund performance is due to survivor bias. Of the approximately 1,000 medium turnover hedge funds tractable using 13Fs that have been active filers over the past 10 years, only half remain. The defunct half dropped out of many databases and out of HF Surviving Aggregate. HF Defunct Aggregate struggled under low factor returns and poor security selection. This is the under-performance swept under the rug:

Chart of the cumulative total, factor, and residual/security selection performance of defunct medium turnover hedge fund U.S. equity portfolios, excluded to cause hedge fund survivor bias

Defunct Medium Turnover U.S. Hedge Fund Long Portfolios: Factor, Residual, and Total Returns

Performance (%)

Annualized

10-year

Total

6.07

83.52

Factor

7.14

104.12

Total – Factor

-1.06

-20.60

The difference in performance between surviving and defunct funds is especially dramatic post-2008:

  • Surviving and defunct hedge funds’ long portfolios show similar nominal returns through 2008. Surviving hedge funds are slightly ahead with a 5% higher αReturns.
  • The 2008 draw-down for surviving and defunct hedge funds is similar. Both groups generate negative αReturns: widespread portfolio liquidation devastates crowded hedge fund bets across both groups.
  • From 2009 the survivors decouple from the defunct: Defunct funds trim exposures. Surviving funds boost exposures.
  • Since 2009 HF Surviving Aggregate outperforms HF Defunct Aggregate by over 70%. Approximately half is due to higher systematic risk and half is due to security selection.
  • Survival is mostly a matter of exposure and stock picking.

Absent a time machine, investors and fund followers cannot know who will be the future survivors. HF Defunct Aggregate consists of survivors that did well enough to last until 2005, but subsequently perished. Unfortunately, many strategies are built on a swampy foundation – the assumption that the average hedge fund is the same as the average surviving hedge fund. True fund performance is a fifth lower.

Consequently, robust skill analytics developed with the understanding of hedge fund survivor bias are critical to keep investors out of yesterday’s winners that tend to become tomorrow’s losers.

Conclusions

  • Historical performance of surviving hedge funds overstates actual average returns by a fifth.
  • Hedge fund survivor bias boosts 10-year nominal returns by 26%, primarily post-2008.
  • Hedge fund survivor bias boosts 10-year security selection returns by approximately 15%.
  • Fund performance and holdings studies that ignore survivor bias will deliver misleading conclusions and disappointing performance.
The information herein is not represented or warranted to be accurate, correct, complete or timely.
Past performance is no guarantee of future results.
Copyright © 2012-2015, 
AlphaBetaWorks, a division of Alpha Beta Analytics, LLC. All rights reserved.
Content may not be republished without express written consent.

Berkshire’s Energy Investment Skills

Should Investors Follow Buffet out of XOM?

Berkshire Hathaway’s year-end 2014 Form 13F showed the liquidation of the approximately $4 billion Exxon Mobil (XOM) position. This sale has generated considerable discussion. Absent data on Berkshire’s Energy Sector record, the sale is uninformative; we provide this data here.

Investors typically treat all ideas of excellent managers with equal deference. This is usually a mistake – even the most skilled managers are seldom equally skilled in all areas. However, Berkshire Hathaway has excellent track record of security selection in the energy sector. Investors should take note of this particular sale.

Berkshire Hathaway’s Security Selection

The risk-adjusted return of Berkshire’s long equity portfolio, estimated from the firm’s 13F filings, is spectacular. We estimate an approximately 60% cumulative return from security selection (stock picking) over the past 10 years. This is αReturn, a metric of security selection performance – the estimated annual percentage return the portfolio would have generated if markets were flat. Berkshire’s cumulative αReturn is shown in blue in the chart below. For comparison, the group of U.S. hedge funds generated slightly negative long security selection returns over the period (in gray):

Chart of the historical return from security selection (stock picking) of Berkshire Hathaway

Berkshire Hathaway’s Security Selection Return

Berkshire Hathaway’s Energy Security Selection

Berkshire’s risk-adjusted return in the Energy Sector is also excellent, though less consistent. If markets were flat over the past 10 years, the long energy portfolio would have returned over 125% compared to a greater than 10% loss for the average hedge fund:

Chart of the historical risk adjusted return from security selection (stock picking) of Berkshire Hathaway  in the Energy Sector

Berkshire Hathaway’s Energy Security Selection Return

All five energy investments over the past 10 years generated positive residual returns un-attributable to the market. These are the sources of the risk-adjusted returns from security selection:

Return (%)

Symbol Name

Total

Factor

Residual

COP ConocoPhillips

94.54

88.12

6.42

PSX Phillips 66

40.33

13.03

27.29

PTR PetroChina Co. Ltd. Sponsored ADR

187.96

104.42

83.54

SU Suncor Energy Inc.

106.19

94.98

11.21

XOM Exxon Mobil Corporation

60.52

50.65

9.86

Stock picking performance persists. Therefore, the sale of XOM by Berkshire is indeed a negative indicator.

Berkshire Hathaway’s Energy Market Timing

While Berkshire shows significant skill in selecting energy stocks, it does not appear skilled in timing the overall energy market. There is no statistically significant relationship between Berkshire’s exposure to the Energy Factor and the factor’s subsequent return:

Chart of Berkshire Hathaway 's Energy Factor timing: the relationship between energy factor exposure and return

Berkshire Hathaway’s Energy Market Timing

Therefore, Berkshire’s sale of XOM is not a bearish indicator for the overall energy sector.

Summary

  • Managers’ trades are predictive only in areas where the managers display statistically significant investment skills (or lack thereof).
  • Berkshire Hathaway has a strong record of energy security selection (stock picking). Consequently, the sale of XOM is a bearish indicator for this particular stock.
  • Berkshire Hathaway does not have a consistent record of energy market timing. Consequently, the sale of XOM is not an indicator for the sector in general.
The information herein is not represented or warranted to be accurate, correct, complete or timely.
Past performance is no guarantee of future results.
Copyright © 2012-2015, AlphaBetaWorks, a division of Alpha Beta Analytics, LLC. All rights reserved.
Content may not be republished without express written consent.

Hedge Funds’ Best and Worst Sectors

Due to the congestion of their investor base, crowded hedge fund stocks are volatile and vulnerable to mass selling. The risk-adjusted performance of consensus bets tends to disappoint. In two past pieces we illustrated the toll of crowding on exploration and production as well as internet companies. We also reviewed two specific crowded bets: SanDisk and eHealth.

While crowded hedge fund ideas do poorly most of the time, they don’t always. Market efficiency varies across sectors, and some industries are more analytically tractable than others. In this article we survey the sectors with the best and worst hedge fund performance records. We will illustrate when investors should stay clear of crowded ideas and when they can embrace them.

Analyzing Hedge Fund Performance and Crowding

To explore performance and crowding we analyze hedge fund sector holdings (HF Sector Aggregate) relative to the Sector Market Portfolio (Sector Aggregate). HF Sector Aggregate is position-weighted, and Sector Aggregate is capitalization-weighted. This follows the approach of our earlier articles on aggregate and sector-specific hedge fund crowding.

Hedge Funds’ Worst Sector: Miscellaneous Metals and Mining

Historical Hedge Fund Performance: Miscellaneous Metals and Mining

Hedge funds’ worst security selection performance for the past ten years has been in the Miscellaneous Metals and Mining sector. The figure below plots historical HF Miscellaneous Metals and Mining Aggregate’s return. Factor return is due to systematic (market) risk. It is the return of a portfolio that replicates HF Sector Aggregate’s market risk. The blue area represents positive and the gray area represents negative risk-adjusted returns from security selection (αReturn).

Chart of the historical total, factor, and security selection performance of the Hedge Fund Miscellaneous Metals and Mining Sector Aggregate

Hedge Fund Miscellaneous Metals and Mining Sector Aggregate Historical Performance

Even without adjusting for risk, crowded bets have done poorly. They consistently underperformed the factor portfolio, missing out on over 300% in gains.

The HF Sector Aggregate’s risk-adjusted return from security selection (αReturn) is the return it would have generated if markets were flat – all market effects on performance have been eliminated. This idiosyncratic performance of the crowded portfolio is a decline of 87%. Crowded bets in this sector are especially dangerous, given their persistently poor performance:

Chart of the historical security selection performance of the Hedge Fund Miscellaneous Metals and Mining Sector Aggregate

Hedge Fund Miscellaneous Metals and Mining Sector Aggregate Historical Security Selection Performance

In this sector, hedge funds lost $900 million to other market participants. In commodity industries, the recipients of this value transfer are usually private investors and insiders.

Current Hedge Fund Bets: Miscellaneous Metals and Mining

The following stocks contributed most to the relative residual (security-specific) risk of the HF Miscellaneous Metals and Mining Sector Aggregate as of Q3 2014. Blue bars represent long (overweight) exposures relative to the Sector Aggregate. White bars represent short (underweight) exposures. Bar height represents contribution to relative stock-specific risk:

Chart of the top contributors' contribution to the Hedge Fund Miscellaneous Metals and Mining Sector Aggregate's risk

Crowded Hedge Fund Miscellaneous Metals and Mining Sector Bets

The following table contains detailed data on these crowded bets. Large and illiquid long (overweight) bets are most at risk of volatility, mass liquidation, and underperformance:

Exposure (%) Net Exposure Share of Risk (%)
HF Sector Aggr. Sector Aggr. % $mil Days of Trading
ZINC Horsehead Holding Corp. 72.74 2.41 70.33 148.5 15.6 80.55
SLCA U.S. Silica Holdings, Inc. 0.30 9.68 -9.39 -19.8 -0.2 6.45
LEU Centrus Energy Corp. Class A 4.54 0.22 4.32 9.1 17.2 4.85
SCCO Southern Copper Corporation 7.69 70.19 -62.51 -132.0 -2.3 4.18
CSTE CaesarStone Sdot-Yam Ltd. 0.00 5.18 -5.18 -10.9 -0.8 1.14
MCP Molycorp, Inc. 3.84 0.84 3.01 6.3 1.7 0.92
MTRN Materion Corporation 7.15 1.82 5.33 11.3 2.1 0.69
HCLP Hi-Crush Partners LP 0.49 2.90 -2.41 -5.1 -0.2 0.35
CA:URZ Uranerz Energy Corporation 2.00 0.27 1.72 3.6 11.7 0.29
IPI Intrepid Potash, Inc. 0.36 3.38 -3.02 -6.4 -0.5 0.22
OROE Oro East Mining, Inc. 0.00 0.52 -0.52 -1.1 -39.9 0.05
CANK Cannabis Kinetics Corp. 0.00 0.10 -0.10 -0.2 -2.7 0.05
UEC Uranium Energy Corp. 0.00 0.33 -0.33 -0.7 -0.4 0.02
FCGD First Colombia Gold Corp. 0.00 0.09 -0.09 -0.2 -19.0 0.02
MDMN Medinah Minerals, Inc. 0.00 0.16 -0.16 -0.3 -4.8 0.01
QTMM Quantum Materials Corp. 0.00 0.13 -0.13 -0.3 -6.3 0.00
ENZR Energizer Resources Inc. 0.00 0.12 -0.12 -0.3 -11.7 0.00
AMNL Applied Minerals, Inc. 0.00 0.20 -0.20 -0.4 -18.5 0.00
LBSR Liberty Star Uranium and Metals Corp. 0.00 0.03 -0.03 -0.1 -4.9 0.00
Other Positions 0.61 0.21
Total 100.00

Hedge Funds’ Best Sector: Real Estate Development

Historical Hedge Fund Performance: Real Estate Development

Hedge funds’ best security selection performance has been in the Real Estate Development Sector. The figure below plots the historical return of HF Real Estate Development Aggregate. Factor return and αReturn are defined as above:

Chart of the historical total, factor, and security selection returns of the Hedge Fund Real Estate Development Sector Aggregate

Hedge Fund Real Estate Development Sector Aggregate Historical Performance

Since 2004, the HF Sector Aggregate outperformed the portfolio with equivalent market risk by approximately 200%. In a flat market, HF Sector Aggregate would have gained approximately 180%:

Chart of the historical security selection (residual) return of the Hedge Fund Real Estate Development Sector Aggregate

Hedge Fund Real Estate Development Sector Aggregate Historical Security Selection Performance

In this sector, hedge funds gained $1 billion at the expense of other market participants. The Real Estate Development Sector appears less efficient but tractable, providing hedge funds with consistent stock picking gains.

Current Hedge Fund Real Estate Development Bets

The following stocks contributed most to the relative residual (security-specific) risk of the HF Real Estate Development Sector Aggregate as of Q3 2014:

Chart of the contribution to the residual (stock-specific) risk of the various hedge fund Crowded Hedge Fund Real Estate Development Sector bets

Crowded Hedge Fund Real Estate Development Sector Bets

The following table contains detailed data on these crowded bets. Since in this sector hedge funds are “smart money,” large long (overweight) bets are most likely to outperform and large short (underweight) bets at most likely to do poorly:

Exposure (%) Net Exposure Share of Risk (%)
HF Sector Aggr. Sector Aggr. % $mil Days of Trading
HHC Howard Hughes Corporation 28.47 15.98 12.49 326.5 17.5 36.73
CBG CBRE Group, Inc. Class A 52.28 26.54 25.74 672.7 10.8 27.58
JLL Jones Lang LaSalle Incorporated 0.14 15.21 -15.07 -393.9 -8.5 12.86
JOE St. Joe Company 0.04 4.94 -4.91 -128.2 -13.5 8.82
ALEX Alexander & Baldwin, Inc. 0.00 4.71 -4.71 -123.2 -13.5 5.38
HTH Hilltop Holdings Inc. 1.35 4.86 -3.51 -91.8 -18.3 4.29
KW Kennedy-Wilson Holdings, Inc. 3.60 6.11 -2.51 -65.6 -7.6 1.19
TRC Tejon Ranch Co. 3.36 1.55 1.81 47.2 37.9 0.77
EACO EACO Corporation 0.00 0.22 -0.22 -5.7 -436.1 0.65
FOR Forestar Group Inc. 0.62 1.66 -1.05 -27.3 -5.3 0.42
FCE.A Forest City Enterprises, Inc. Class A 8.78 10.56 -1.78 -46.5 -1.9 0.35
SBY Silver Bay Realty Trust Corp. 0.07 1.68 -1.61 -42.0 -8.4 0.23
AVHI A V Homes Inc 0.26 0.87 -0.61 -15.8 -28.7 0.20
MLP Maui Land & Pineapple Company, Inc. 0.00 0.29 -0.29 -7.5 -132.0 0.10
CTO Consolidated-Tomoka Land Co. 0.16 0.77 -0.61 -15.9 -24.5 0.09
RDI Reading International, Inc. Class A 0.02 0.54 -0.52 -13.7 -14.2 0.08
ABCP AmBase Corporation 0.00 0.15 -0.15 -3.8 -130.1 0.06
AHH Armada Hoffler Properties, Inc. 0.00 0.59 -0.59 -15.5 -9.4 0.06
OMAG Omagine, Inc. 0.00 0.07 -0.07 -1.9 -24.7 0.05
FVE Five Star Quality Care, Inc. 0.26 0.49 -0.23 -6.1 -5.1 0.04
Other Positions 0.01 0.07
Total 100.00

Real Estate Development is not the only sector where hedge funds excel. Crowded Coal, Hotels, and Forest Product sector ideas have also done well. Skills vary within each sector: The most skilled funds persistently generate returns in excess of the crowd, while the least skilled funds persistently fall short. Performance analytics built on robust risk models help investors and allocators reliably identify each.

Conclusions

  • With proper data, attention to hedge fund crowding prevents “unexpected” volatility and losses.
  • Market efficiency and tractability vary across sectors – crowded hedge fund bets do poorly in most sectors, but do well in some.
  • Investors should avoid crowded ideas in sectors of persistent hedge fund underperformance, such as Miscellaneous Metals and Mining.
  • Investors can embrace crowded ideas in sectors of persistent hedge fund outperformance, such as Real Estate Development.
  • Funds with significant and persistent stock picking skills exist in most sectors, even those with generally poor hedge fund performance. AlphaBetaWorks’ Skill Analytics identify best overall and sector-specific stock pickers.
The information herein is not represented or warranted to be accurate, correct, complete or timely.
Past performance is no guarantee of future results.
Copyright © 2012-2015, AlphaBetaWorks, a division of Alpha Beta Analytics, LLC. All rights reserved.
Content may not be republished without express written consent.

Smart Beta and Market Timing

Why Returns-Based Style Analysis Breaks for Smart Beta Strategies

Smart beta (SB) strategies tend to vary market beta and other factor exposures (systematic risk) over time. Consequently, market timing is an important source of their risk-adjusted returns, at times more significant than security selection. We have previously discussed that returns-based style analysis (RBSA) and similar methods fail for portfolios that vary exposures. Errors are most pronounced for the most active funds:

  • Estimates of a fund’s historical and current systematic risks may be flawed.
  • Excellent low-risk funds may be incorrectly deemed poor.
  • Poor high-risk funds may be incorrectly deemed excellent.

Due to the variation in Smart Beta strategies’ exposures over time, returns-based methods tend to fail for these strategies as well.

Three Smart Beta Strategies

We analyze the historical risk of three SB strategies as implemented by the following ETFs:

SPLV indexes 100 stocks from the S&P 500 with the lowest realized volatility over the past 12 months. PRF indexes the largest US equities based on book value, cash flow, sales, and dividends. SPHQ indexes the constituents of the S&P 500 with stable earnings and dividend growth.

All three smart beta strategies varied their factor exposures including their market exposures.

Low Volatility ETF (SPLV) – Market Timing

The low-volatility smart beta strategy has varied its market exposure significantly, increasing it by half since 2011. As stocks with the lowest volatility – and their risk – changed over time, the fund implicitly timed the broad equity market.  The chart below depicts the market exposure of SPLV over time:

Chart of this historical U.S. market exposure of the low volatility smart bet (SB) strategy as implemented by PowerShares S&P 500 Low Volatility Portfolio ETF (SPLV)

PowerShares S&P 500 Low Volatility Portfolio ETF (SPLV) – Historical U.S. Market Exposure

Low Volatility ETF (SPLV) – Historical Factor Exposures

SPLV’s market exposure fluctuates due to changes in its sector bets. Since the market betas of sectors differ from one another, as sector exposures vary so does the fund’s market exposure:

Chart of the historical exposures to significant risk factors of the low volatility smart bet (SB) strategy as implemented by PowerShares S&P 500 Low Volatility Portfolio ETF (SPLV)

PowerShares S&P 500 Low Volatility Portfolio ETF (SPLV) – Significant Historical Factor Exposures

Low Volatility ETF (SPLV) – Returns-Based Analysis

The chart below illustrates a returns-based analysis (RBSA) of SPLV. A regression of SPLV’s monthly returns against U.S. Market’s monthly returns estimates the fund’s U.S. Market factor exposure (beta) at 0.50 – significantly different from the historical risk observed above:

Chart of the regression of the historical returns of PowerShares S&P 500 Low Volatility Portfolio ETF (SPLV) against the Market

PowerShares S&P 500 Low Volatility Portfolio ETF (SPLV) – Historical Returns vs. the Market

This estimate of beta understates SPLV’s historical market beta (0.55) by a tenth and understates current market beta (0.70) by more than a third. RBSA thus fails to evaluate the current and historical risk of this low volatility smart beta strategy. Performance attribution and all other analyses that rely on estimates of historical factor exposures will also fail.

Fundamental ETF (PRF) – Market Timing

The market risk of the Fundamental ETF has been remarkably constant, except from 2009 to 2010. Back in 2009 PRF increased exposure to high-beta (mostly financial) stocks in a spectacularly prescient act of market timing:

Chart of the historical exposures of the fundamental smart beta (SB) strategy as implemented by the PowerShares FTSE RAFI US 1000 Portfolio ETF (PRF) to U.S. and Canadian Markets

PowerShares FTSE RAFI US 1000 Portfolio ETF (PRF) – Historical Market Exposure

Fundamental ETF (PRF) – Historical Factor Exposures

The historical factor exposure chart for PRF illustrates this spike in Finance Factor exposure from the typical 20-30% range to over 50% and the associated increase in U.S. Market exposure:

Chart of the exposures of the fundamental smart beta (SB) strategy as implemented by the PowerShares FTSE RAFI US 1000 Portfolio ETF (PRF) to significant risk factors

PowerShares FTSE RAFI US 1000 Portfolio ETF (PRF) – Significant Historical Factor Exposures

This 2009-2010 exposure spike generated a significant performance gain for the fund. PRF made approximately 20% more than it would have with constant factor exposures, as illustrated below:

Chart of the historical return from market timing (variation in factor exposures) of the PowerShares FTSE RAFI US 1000 Portfolio ETF (PRF)

PowerShares FTSE RAFI US 1000 Portfolio ETF (PRF) – Historical Risk-Adjusted Return from Market Timing

By contrast, PRF’s long-term risk-adjusted return from security selection is insignificant:

Chart of the historical returns from security selection (stock picking) of the PowerShares FTSE RAFI US 1000 Portfolio ETF (PRF)

PowerShares FTSE RAFI US 1000 Portfolio ETF (PRF) – Historical Risk-Adjusted Return from Security Selection

Factor timing turns out to be more important for the performance of some smart beta strategies than security selection.

Fundamental ETF (PRF) – Returns-Based Analysis

A returns-based analysis of PRF estimates historical U.S. market beta around 1.05:

Chart of the regression of the returns of PowerShares FTSE RAFI US 1000 Portfolio ETF (PRF) against the U.S. Market

PowerShares FTSE RAFI US 1000 Portfolio ETF (PRF) – Historical Returns vs. the Market

This 1.05 beta estimate only slightly overstates the fund’s current and historical betas, but misses the 2009-2010 exposure spike. Returns-based analysis thus does a decent job evaluating the average risk of a fundamental indexing smart beta strategy, but fails in historical attribution.

Quality ETF (SPHQ) – Market Timing

The market exposure of the quality smart beta strategy (SPHQ) swung wildly before 2011. It has been stable since:

Chart of the U.S. and Canadian Market exposures of the quality smart beta (SB) strategy as implemented by the PowerShares S&P 500 High Quality Portfolio ETF (SPHQ)

PowerShares S&P 500 High Quality Portfolio ETF (SPHQ) – Historical Market Exposure

Quality ETF (SPHQ) – Historical Factor Exposures

As with the other smart beta strategies, market timing by SPHQ comes from significant variations in sector bets:

Chart of the historical exposures of the quality smart beta (SB) strategy as implemented by the PowerShares S&P 500 High Quality Portfolio ETF (SPHQ) to significant risk factors

PowerShares S&P 500 High Quality Portfolio ETF (SPHQ) – Significant Historical Factor Exposures

Quality ETF (SPHQ) – Returns-Based Analysis

A returns-based analysis of SPHQ estimates historical U.S. market beta around 0.86:

Chart of the regression of the historical returns of PowerShares S&P 500 High Quality Portfolio ETF (SPHQ) against the U.S. Market

PowerShares S&P 500 High Quality Portfolio ETF (SPHQ) – Historical Returns vs. the Market

Given the large variation in SPHQ’s risk over time, this 0.86 beta estimate understates the average historical beta but slightly overstates the current one. While the current risk estimate is close, RBSA fails for historical risk estimation and performance attribution.

Conclusions

  • Low volatility indexing, fundamental indexing, and quality indexing smart beta strategies vary market and other factor exposures (systematic risk) over time.
  • Due to exposure variations over time, returns-based style analysis and similar methods tend to fail for smart beta strategies:
    • Funds’ historical systematic risk estimates are flawed.
    • Funds’ current systematic risk estimates are flawed.
    • Performance attribution and risk-adjusted performance estimates are flawed.
  • Analysis and aggregation of factor exposures of individual holdings throughout a portfolio’s history with a capable multi-factor risk model produces superior risk estimates and performance attribution.
The information herein is not represented or warranted to be accurate, correct, complete or timely.
Past performance is no guarantee of future results.
Copyright © 2012-2015, AlphaBetaWorks, a division of Alpha Beta Analytics, LLC. All rights reserved.
Content may not be republished without express written consent.